
Midpoint displacement algoritme 
(vaak toegepast in procedural content 
generation in games) 

Midpoint displacement

Van strategie tot algorime



Midpoint displacement

uit procedural content generation (PCG) in games

1. start with a horizontal line.
2. find midpoint of this line
3. move midpoint up / down by a random amount
4. repeat 2 - 4 with lower range of random amount

image source: Yannakakis, G. N., & Togelius, J. (2018). Artificial intelligence and 
games. Springer.



1. start with two notes
2. insert new note between each set of 2 notes
3. move pitch of new note up / down by a random amount
4. repeat 2 - 4 with lower range of random amount

Midpoint displacement

uit procedural content generation (PCG) in games

1. start with a horizontal line.
2. find midpoint of this line / line fragment
3. move midpoint up / down by a random amount
4. repeat 2 - 4 with lower range of random amount

Applied freely to a sequence of notes



1. start with two notes
2. insert new note between each set of 2 notes
3. move pitch of new note up / down by a random amount
4. repeat 2 - 4 with lower range of random amount

uit procedural content generation (PCG) in games

1. start with a horizontal line.
2. find midpoint of this line / line fragment
3. move midpoint up / down by a random amount
4. repeat 2 - 4 with lower range of random amount

duration, velocity, …

Midpoint displacement Applied freely to a sequence of notes



Midpoint displacement

1. start with two notes
2. insert new note between each set of 2 notes
3. move pitch of new note up / down by a random amount
4. repeat 2 - 4 with lower range of random amount

Applied freely to a sequence of notes

Iteration #1

input: 

INS #1: 

output: 



index 0 

index: 0
Midpoint displacement

1. start with two notes
2. insert new note between each set of 2 notes
3. move pitch of new note up / down by a random amount
4. repeat 2 - 4 with lower range of random amount

Applied freely to a sequence of notes

Iteration #1

input: 

INS #1: 

output: 



index: 0

index 0 

Midpoint displacement

1. start with two notes
2. insert new note between each set of 2 notes
3. move pitch of new note up / down by a random amount
4. repeat 2 - 4 with lower range of random amount

Applied freely to a sequence of notes

Iteration #1

input: 

INS #1: 

output: 



index: 0

index 0 

Midpoint displacement

1. start with two notes
2. insert new note between each set of 2 notes
3. move pitch of new note up / down by a random amount
4. repeat 2 - 4 with lower range of random amount

Applied freely to a sequence of notes

Iteration #1

input: 

INS #1: 

output: 

Iteration #2

input: 

INS #1: 

INS #2:

output:



index 0 

indices: 0, ...

index: 0

index 0 

Midpoint displacement

1. start with two notes
2. insert new note between each set of 2 notes
3. move pitch of new note up / down by a random amount
4. repeat 2 - 4 with lower range of random amount

Applied freely to a sequence of notes

Iteration #1

input: 

INS #1: 

output: 

Iteration #2

input: 

INS #1: 

INS #2:

output:



index 0 

index 2 

indices: 0, 2

index: 0

index 0 

Midpoint displacement

1. start with two notes
2. insert new note between each set of 2 notes
3. move pitch of new note up / down by a random amount
4. repeat 2 - 4 with lower range of random amount

Applied freely to a sequence of notes

Iteration #1

input: 

INS #1: 

output: 

Iteration #2

input: 

INS #1: 

INS #2:

output:



index 0 

index 2 

indices: 0, 2

index: 0

index 0 

Midpoint displacement

1. start with two notes
2. insert new note between each set of 2 notes
3. move pitch of new note up / down by a random amount
4. repeat 2 - 4 with lower range of random amount

Applied freely to a sequence of notes

Iteration #1

input: 

INS #1: 

output: 

Iteration #2

input: 

INS #1: 

INS #2:

output:



index 0 

index 2 

index 4 

index 6 

index 0 

index 2 

indices: 0, 2

index: 0

index 0 

Iteration #1

input: 

INS #1: 

output: 

Iteration #3

input: 

INS #1: 

INS #2:

INS #3:

INS #4:

output:

Iteration #2

input: 

INS #1: 

INS #2:

output:



index 0 

indices: 0, ...index: 0

index 0 

index 0 

index 2 

indices: 0, 2

Iteration #1

input: 

INS #1: 

output: 

Iteration #3

input: 

INS #1: 

INS #2:

INS #3:

INS #4:

output:

Iteration #2

input: 

INS #1: 

INS #2:

output:



index 0 

index 2 

indices: 0, 2, ...index: 0

index 0 

index 0 

index 2 

indices: 0, 2

Iteration #1

input: 

INS #1: 

output: 

Iteration #3

input: 

INS #1: 

INS #2:

INS #3:

INS #4:

output:

Iteration #2

input: 

INS #1: 

INS #2:

output:



index 0 

index 2 

index 4 

indices: 0, 2, 4, ...index: 0

index 0 

index 0 

index 2 

indices: 0, 2

Iteration #1

input: 

INS #1: 

output: 

Iteration #3

input: 

INS #1: 

INS #2:

INS #3:

INS #4:

output:

Iteration #2

input: 

INS #1: 

INS #2:

output:



index 0 

index 2 

index 4 

index 6 

indices: 0, 2, 4, 6index: 0

index 0 

index 0 

index 2 

indices: 0, 2

Iteration #1

input: 

INS #1: 

output: 

Iteration #3

input: 

INS #1: 

INS #2:

INS #3:

INS #4:

output:

Iteration #2

input: 

INS #1: 

INS #2:

output:



index 0 

index 2 

index 4 

index 6 

indices: 0, 2, 4, 6Iteration #1

input: 

INS #1: 

output: 

index: 0

index 0 

Iteration #3

input: 

INS #1: 

INS #2:

INS #3:

INS #4:

output:

Iteration #2

input: 

INS #1: 

INS #2:

output:

index 0 

index 2 

indices: 0, 2



Iteration indices of notes to split # INS # INS 
expressed as 
power of 2

1

2

3

4

5

6

Midpoint displacement
Applied freely to a sequence of notes
How to generate the necessary indices?

Iteration #1

input: 

INS #1: 

output: 

index: 0



Iteration indices of notes to split # INS # INS 
expressed as 
power of 2

1 0 1 2 ^ 0

2

3

4

5

6

Midpoint displacement
Applied freely to a sequence of notes
How to generate the necessary indices?

Iteration #1

input: 

INS #1: 

output: 

index: 0



Iteration #2

input: 

INS #1: 

INS #2:

output:

indices: 0, 2Iteration indices of notes to split # INS # INS 
expressed as 
power of 2

1 0 1 2 ^ 0

2 0, 2 2 2 ^ 1

3

4

5

6

Midpoint displacement
Applied freely to a sequence of notes
How to generate the necessary indices?



Iteration #3

input: 

INS #1: 

INS #2:

INS #3:

INS #4:

output:

Iteration indices of notes to split # INS # INS 
expressed as 
power of 2

1 0 1 2 ^ 0

2 0, 2 2 2 ^ 1

3 0, 2, 4, 6 4 2 ^ 2

4

5

6

Midpoint displacement
Applied freely to a sequence of notes
How to generate the necessary indices?

indices: 0, 2, 4, 6



Iteration indices of notes to split # INS # INS 
expressed as 
power of 2

1 0 1 2 ^ 0

2 0, 2 2 2 ^ 1

3 0, 2, 4, 6 4 2 ^ 2

4 0, 2, 4, 6, 8, 10, 12, 14 8 2 ^ 3

5 0, 2, 4, 6, 8, 10, 12, 14, …, 30 16 2 ^ 4

6 ... 32 2 ^ 5

Midpoint displacement
Applied freely to a sequence of notes
How to generate the necessary indices?



Iteration indices of notes to split # INS # INS 
expressed as 
power of 2

1 0 1 2 ^ 0

2 0, 2 2 2 ^ 1

3 0, 2, 4, 6 4 2 ^ 2

4 0, 2, 4, 6, 8, 10, 12, 14 8 2 ^ 3

5 0, 2, 4, 6, 8, 10, 12, 14, …, 30 16 2 ^ 4

6 ... 32 2 ^ 5

pseudo code

output
0
0 
2
0
2
4
6
0
2
4
6
8
10
12

Midpoint displacement
Applied freely to a sequence of notes
How to generate the necessary indices? ?



Iteration indices of notes to split # INS # INS 
expressed as 
power of 2

1 0 1 2 ^ 0

2 0, 2 2 2 ^ 1

3 0, 2, 4, 6 4 2 ^ 2

4 0, 2, 4, 6, 8, 10, 12, 14 8 2 ^ 3

5 0, 2, 4, 6, 8, 10, 12, 14, …, 30 16 2 ^ 4

6 ... 32 2 ^ 5

pseudo code

for i in range(num_iterations): 

num_splits = 2 ^ i

for j in range(num_splits): 

index = j * 2

print(index)

output

0
0
2
0
2
4
6
0
2
4
6
8
...

Midpoint displacement
Applied freely to a sequence of notes
How to generate the necessary indices?



1. start with two notes
2. insert new note between each set of 2 notes
3. move pitch of new note up / down by a random amount
4. repeat 2 - 4 with lower range of random amount

Midpoint displacement
Applied freely to a sequence of notes
How to insert / split a note?

insert

split



Midpoint displacement

Example 1 split_amount = 0.5

input: 

split: 

qnote_dur = 4 qnote_dur = 2

qnote_dur = 2 qnote_dur = 2qnote_dur = 2

Example 2 split_amount = 0.25

input: 

split: 

qnote_dur = 4 qnote_dur = 2

1 23

Applied freely to a sequence of notes
How to split a note?



Midpoint displacement
Applied freely to a sequence of notes
How to split a note?

Example 1 split_amount = 0.5

input: 

split: 

qnote_dur = 4 qnote_dur = 2

qnote_dur = 2 qnote_dur = 2qnote_dur = 2

pseudo code

// split amount → divide in half, in a quarter, in an eighth

split_amount = random.choice([0.5, 0.25, 0.125])

// retrieve current note and its duration

note = notes[index]

dur = note[“qnote_dur”]

// calculate new note duration and rest value

new_dur = dur * split_amount

rest_dur = dur - new_dur

// store new note duration to current note

note[“qnote_dur”] = new_dur

// generate new note with rest duration value 

new_note = {“qnote_dur”: rest_dur}

// insert new note

notes.insert(new_note, index + 1) 

Example 2 split_amount = 0.25

input: 

split: 

qnote_dur = 4 qnote_dur = 2

1 23


