self.debug - Gebeg

self.logger - \OgRig.
path:

self.fil!o*"")
self.fingerprints.

ﬁ%mgsmethod

s

. s

¢ from_settings{ciss S8
de settings.gets

cls(job_dir(sett

debug

def rmmmmst_seen(self,.ffi;
fp celf.request_ii
fp self.fingerpr
1rue
f.fingerprints.
self.file: | |
swkﬁ.file.wr1te(f

add(
sel

~rorint(s

Midpoint displacement

Midpoint displacement algoritme
(vaak toegepast in procedural content
generation in games)

Van strategie tot algorime

Generation 0 Midpoint displacement

uit procedural content generation (PCG) in games
Generation 1

start with a horizontal line.

find midpoint of this line

move midpoint up / down by a random amount
repeat 2 - 4 with lower range of random amount

S

Generation 2

Generation 3

Final Generation

Fig. 4.8 The Midpoint Displacement algorithm visualized.

image source: Yannakakis, G. N., & Togelius, J. (2018). Artificial intelligence and
games. Springer.

Midpoint displacement —»

uit procedural content generation (PCG) in games

ST e

start with a horizontal line.

find midpoint of this line / line fragment

move midpoint up / down by a random amount
repeat 2 - 4 with lower range of random amount

Applied freely to a sequence of notes

S DY

start with two notes

insert new note between each set of 2 notes

move pitch of new note up / down by a random amount
repeat 2 - 4 with lower range of random amount

Midpoint displacement —»

uit procedural content generation (PCG) in games

ST e

start with a horizontal line.

find midpoint of this line / line fragment

move midpoint up / down by a random amount
repeat 2 - 4 with lower range of random amount

Applied freely to a sequence of notes

S DY

start with two notes

insert new note between each set of 2 notes

mové pitch of new note up / down by a random amount
repeat 2 - 4 with lower range of random amount

duration, velocity, ...

[teration #1
out [° 6o] Midpoint displacement
Pt Applied freely to a sequence of notes

INS #1:

start with two notes

insert new note between each set of 2 notes

move pitch of new note up / down by a random amount
repeat 2 - 4 with lower range of random amount

output:

S DY

lteration #1 index: 0
input: [o0]

Midpoint displacement
Applied freely to a sequence of notes

INS #1: [0o o]
index 0 start with two notes

insert new note between each set of 2 notes

move pitch of new note up / down by a random amount

repeat 2 - 4 with lower range of random amount

output:

S DY

lteration #1 index: 0

input:

INS #1:

index 0

output:

(e o)

Fv 'V'(
®o o)
-

EXXD

Midpoint displacement
Applied freely to a sequence of notes

start with two notes

insert new note between each set of 2 notes

move pitch of new note up / down by a random amount
repeat 2 - 4 with lower range of random amount

S DY

lteration #1

input:

INS #1:

index 0

output:

(@ o]

(00 0]

-

EXXD

lteration #2

input: [. ® .]

INS #1:
INS #2;

output:

index: 0

Midpoint displacement
Applied freely to a sequence of notes

= 0T

start with two notes

insert new note between each set of 2 notes

move pitch of new note up / down by a random amount
repeat 2 - 4 with lower range of random amount

lteration #1 index: 0
input: : 0]

Midpoint displacement
Applied freely to a sequence of notes

Ns#]: [@ @ .]

index 0 -

output: ' 00]

start with two notes

insert new note between each set of 2 notes

move pitch of new note up / down by a random amount
repeat 2 - 4 with lower range of random amount

= 0T

lteration #2 indices: 0, ...

input: [‘ ° ‘]

INS #1: [Q PY b .]

index 0

INS #2;

output:

lteration #1 index: 0
input: : 0]

Midpoint displacement
Applied freely to a sequence of notes

Ns#]: [@ @ .]

index 0 -

output: ' O 0 O]

start with two notes

insert new note between each set of 2 notes

move pitch of new note up / down by a random amount
repeat 2 - 4 with lower range of random amount

S DY

lteration #2 indices: 0, 2

input: Q Q .]

r

index 0

INS #1: '6 o b .]

INS #2; '6 C Q o Q]

index 2 .

output:

lteration #1 index: 0

r

nput: (@ @] Midpoint displacement

Applied freely to a sequence of notes
Ns#: (@ @ @]

index 0 -

output: ' O 0 O]

-

start with two notes

insert new note between each set of 2 notes

move pitch of new note up / down by a random amount
repeat 2 - 4 with lower range of random amount

S DY

lteration #2 indices: 0, 2

f

input: e ‘]

-

index 0 .

NS #1: Q © b .]

INS #2; '6 C Q o Q]

index 2

output: | ® ® @ @ .]

lteration #1 index: 0 lteration #3

input: (@ @) input (@ @ @ ® @)

ns#: (e e o] NS #1:
index 0
output: S oo] INS #2:
index 2
lteration #2 indices: 0,2 |\s #3
. index 4
input: C N N]]
y INS ;6#4:
N#T: [@ @ @ .]
index 0 . Outputi
N#: ([0 @ @ @ .]
index 2 .
output: :. 00 .]

lteration #1 index: 0 lteration #3 indices: O, ...

r

inputt | @ @]

input: [Q.. [0]
Ns#: (@ @ .]

index 0 -

|Ns#1:[.0.0.0]

index 0

output: I O 0 0] NS #O:
lteration #2 indices: 0,2 |\s #3
input: ' C N N]]

- INS #4:
N#T: [@ @ @ .]
index 0 . Output:
INS #2: '00000]
index 2 .
output: :. 00 .]

lteration #1 index: 0 lteration #3 indices: 0, 2, ...

nput: | @ .] input: :Q o0 o0 0]
o (e e o] ns#: (0000 e e)
index 0 .
output:bQQQ] '.“gsf2¢:”"“‘]
lteration #2 indices: 0,2 |\s #3
input: ' C N N]]
y INS #4.
Ns#T: (@ @ @ .]
index 0 . Outpu‘t:
INS #2: '00000]
index 2 .
output: :. 00 .]

lteration #1 index: 0 lteration #3 indices: 0, 2 4, ...

r

inputt | @ @]

input: :QO. [0]
Ns#]: [@ @ .]

index 0 -

INS #1: :00...0]

index 0
OUtpUt:¥‘..] INS #2: ’.....‘.]
index 2 .
[teration #2 indices: 0,2 ns#3: (0 0@ ® 0 ® @O)
. index 4 -
input: 00]
S INS #4:
INS #1: (N O]
index 0 . Outputi
INS #2: FCCQ..]
index 2 .
output: :. 00 .]

lteration #1 index: 0 Ilteration #3 indices: 0,2, 4, 6

r

inputt | @ @]

input: :QO. [0]
Ns#]: [@ @ .]

index 0 -

INS #1: :00...0]

index 0
OUtpUt:¥‘..] INS #2: ’.....‘.]
index 2 .
[teration #2 indices: 0,2 ns#3: ([0 0@ ® 0@ @O)
. index 4 .
input: 00 i
~) ns#: (000000 000)
NS#1: | @ ® @ O]
index 0 . Outputi
INS #2: FCCQ..]
index 2 .
output: :. 00 .]

lteration #1 index: 0 Ilteration #3 indices: 0,2, 4, 6

input: (@ .] input: :Q o000 0]
o (e e o] ns#: (0000 e e)
index 0 .
OUtpUt:¥‘..] ”\£18#2: ’.....‘.]
index 2 .
[teration #2 indices: 0,2 ns#3: ([0 0@ ® 0@ @O)
. index 4 .
input: 00)
») ns#: (000000000
NS#1: | @ ® @ O] (
i\ output ([0 @ © © © © 00 O]
INS #2: '00000]
index 2 .
output: :. 00 .]

Midpoint displacement

Applied freely to a sequence of notes

How to generate the necessary indices?

Iteration indices of notes to split # INS # INS

expressed as
power of 2

1

2

3

4

5

[teration #1

input: [. 0]
INS#1:[. ® .]

output: [O o0]

index: 0

Midpoint displacement
Applied freely to a sequence of notes
How to generate the necessary indices?

Iteration indices of notes to split # INS # INS

expressed as
power of 2

1 0 1 220

2

3

4

5

6

[teration #1

input: [. 0]
INS#1:[. ® .]

output: [O o0]

index: 0

Midpoint displacement

Applied freely to a sequence of notes
How to generate the necessary indices?

Iteration indices of notes to split # INS # INS

expressed as
power of 2

1 0 1 220

2 0,2 2 21

3

4

5

6

[teration #2

input: :. o .]
Ns#: (e @ @ @]
Ns#2: (@ @@ ® @]
output: :0 00 O]

indices: 0, 2

Midpoint displacement
Applied freely to a sequence of notes
How to generate the necessary indices?

Iteration indices of notes to split # INS # INS

expressed as
power of 2

1 0 1 220

2 0,2 2 21

3 0,2,4,6 4 272

4

5

input:
INS #1:
INS #2:

INS #3:

INS #4: (

output:

lteration #3

EX XN
KX
EXXX

4
EX XN

4
EX XN

indices: 0, 2, 4, 6
°)

o)

oo 0]
eoeoe0)]
NN XNY

e0o0o00]

Midpoint displacement
Applied freely to a sequence of notes
How to generate the necessary indices?

Iteration indices of notes to split # INS # INS

expressed as
power of 2

1 0 1 220

2 0,2 2 21

3 0,2,4,6 4 272

4 0,2,4,6,8,10,12,14 8 23

5 0,2,4,6,8,10,12,14, .., 30 16 204

6 32 2725

Midpoint displacement
Applied freely to a sequence of notes
How to generate the necessary indices?

Iteration indices of notes to split # INS # INS

expressed as
power of 2

1 0 1 220

2 0,2 2 21

3 0,2,4,6 4 272

4 0,2,4,6,8,10,12,14 8 23

5 0,2,4,6,8,10,12,14, .., 30 16 204

6 . 32 2725

pseudo code

?

output

= 20O R~ARNOOOBRANONOO

N O

Midpoint displacement
Applied freely to a sequence of notes
How to generate the necessary indices?

Iteration indices of notes to split # INS # INS

expressed as
power of 2

1 0 1 220

2 0,2 2 21

3 0,2,4,6 4 272

4 0,2,4,6,8,10,12,14 8 23

5 0,2,4,6,8,10,12,14, .., 30 16 204

6 32 2725

pseudo code

for i in range(num_iterations):
num_splits = 2 ~ 1

for j in range(num_splits):

index = j * 2

print(index)

output

Midpoint displacement
Applied freely to a sequence of notes
How to insert / split a note?

ST e

start with two notes

insert new note between each set of 2 notes

move pitch of new note up / down by a random amount
repeat 2 - 4 with lower range of random amount

insert

Generation 0

Generation 1
Midpoint displacement

Generation 2

Midpoint displacement
Applied freely to a sequence of notes
How to split a note?

ExamD|e 1 split_amount = 0.5

[N
input:
. . /

y
r D
Sp“t gnote_dur = 2]gnote_dur = 2jgnote_dur = 2
. p

Exam[)le 2 split_amount = 0.25

input: anote dur - 4

r"..
r N
split: _)

Midpoint displacement
Applied freely to a sequence of notes pseudo code

HOW -to split 3 note’) // split amount — divide in half, in a quarter, in an eighth
split_amount = random.choice([0.5, ©.25, 0.125])

// retrieve current note and its duration

ExamD|e 1 split_amount = 0.5 note = notes[index]

. dur = note[“gnote_dur”]

N
input:
. - 4

// calculate new note duration and rest value

y
. [) = * i
Sp“t: gnote_dur = 2]gnote_dur = 2jgnote_dur = 2 new_dur dur split_amount
. p

rest _dur = dur - new_dur
// store new note duration to current note

Examgle 2 split_amount = 0.25 note[“gqnote_dur”] = new_dur

// generate new note with rest duration value

r D
|nput ¢ ‘ new_note = {“gnote_dur”: rest _dur}

// insert new note

¥
r N
SF)“t' . J notes.insert(new_note, index + 1)

